Charles' Law

It states that the volume of a given mass of a gas increases or decreases by 1/273.15 of its volume at 0°C for each 1°C increase or decrease in temperature when the pressure of the gas remains constant.

$$V_t = V_0 \left(1 + \frac{t}{273.15} \right) = V_0 \left(\frac{273.15 + t}{273.15} \right)$$

273.15 +
$$t = T_{\text{K}}$$
 = Temperature in Kelvin scale $\therefore V_t = \left(\frac{V_0}{273.15}\right) T_{\text{K}}$

Charles' law can also be stated as, volume of a given mass of a gas is directly proportional to its absolute temperature when pressure is constant

or
$$\frac{V}{T} = K = constant$$
 or $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

Thus, V-T graph in an isobaric process is a straight line passing through origin, or $\frac{V}{T}$ versus V or T graph is a straight line parallel to V or T axis.

